The single evolutionary origin of chlorinated auxin provides a phylogenetically informative trait in the Fabaceae

HK Lam, SAM McAdam, EL McAdam and JJ Ross

School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia

Chlorinated auxin (4-chloroindole-3-acetic acid, 4-Cl-IAA), a highly potent plant hormone, was once thought to be restricted to species of the tribe Fabeae within the Fabaceae, until we recently detected this hormone in the seeds of Medicago, Melilotus and Trifolium species. Furthermore, we found no evidence that Pinus spp. synthesize 4-Cl-IAA in seeds, contrary to a previous report. The absence of 4-Cl-IAA in the seeds of the cultivated species Cicer aeritinum from the Cicerae tribe, immediately basal to the Fabeae and Trifolieae tribes, suggested a single evolutionary origin of 4-Cl-IAA. Here, we provide a more robust phylogenetic placement of the ability to produce chlorinated auxin by screening key species spanning this evolutionary transition. We report no detectable level of 4-Cl-IAA in Cicer echinospermum (a wild relative of Cicer aeritinum) and 4 species (Galega officinalis, Parochetus communis, Astragalus propinquus and A. sinicus) from tribes or clades more basal or sister to the Cicerae tribe. We did detect 4-Cl-IAA in the dry seeds of four species from the genus Ononis that are either basal to the genera Medicago, Melilotus and Trigonella or basal to, but still within, the Fabeae and Trifolieae (ex. Parochetus) clades. We conclude that the single evolutionary origin of this hormone in seeds can be used as a phylogenetically informative trait within the Fabaceae as well as an ideal model system to further investigate the action and activity of halogenating enzymes in plants.